Ion Sources and Injectors for HEDP Ion Drivers

Joe Kwan

10/26/04

It is a challenge to develop an injector for HEDP

- HEDP requires ~1 μC at the target (beam voltage is limited by the Bragg peak energy).
- At the injector, a100 ns beam pulse requires 10 A current.
- If $\beta = 0.01$ (e.g.1 MV Ne⁺), the bunch length is 0.3 m, and the line charge density (λ) is 3.3 μ C/m.
- This is about 30 times shorter in pulse length and 20 times higher in beam current than the present HIF injector (HCX).
- Multiple beams can reduce the injector requirements.

The challenge (similar to HIF) is to simultaneously achieve high current density and high current

$$\varepsilon_{n,4rms} = 2a\sqrt{\frac{kT_i}{mc^2}}$$
 $J = \chi \frac{V^{3/2}}{d^2}$ $I = \chi \frac{\pi a^2}{d^2}V^{3/2}$

$$V = 100kV \sqrt{\frac{d[cm]}{1[cm]}}$$

$$I = \chi \frac{\pi a^2}{d^2} V^{3/2}$$

We need:

- High current density ion source, e.g. $J > 100 \text{ mA/cm}^2$.
- High voltage gradient without breakdown, e.g. > 100 kV/cm
- High line charge density beam transport to keep the beam from blowing up.

Examples of a single large diameter beam

Case 1 (HCX size surface source):

1.68 A, 750 kV Li⁺ Ion Diode

10.0 cm diam \Rightarrow J = 21.4 mA/cm²

25 cm extraction gap \Rightarrow 30 kV/cm

 $\varepsilon_{\rm n,4rms} = 0.62 \ \pi - mm - mrad (0.25 \ eV)$

Case 2 (small aperture gas source):

0.48 A, 200 kV He+ Ion Diode

1.5 cm diam \Rightarrow J = 270 mA/cm²

3.0 cm extraction gap ⇒ 66 kV/cm

 $\varepsilon_{\rm n,4rms} = 0.19 \ \pi - mm - mrad (0.6 \ eV)$

What if we can beat conventional wisdom?

- Hold ultra-high voltage gradient across a large gap using short pulse or magnetic insulation
- Obtain very high current density for a short pulse (from a large surface ionization source)
- Use solenoid focusing for high line charge density transport or use neutralized beam transport at the injector
- Achieve large beam compression e.g. use accel-decel scheme
- Apply innovative beam chopping scheme

A conceptual magnetically-insulated, short pulse, high current ion diode

Several case studies by assuming either high current density or high voltage gradient

	Case 3	Case 4	Case 5
Ion species	Li+	Li+	He+
Diode voltage (kV)	175	1000	750
Beam current (A)	0.33	5.00	5.00
Source diameter (cm)	0.8	8.0	8.0
Extraction gap (cm)	1.5	14.4	13.0
Emittance (pi-mm-mrad)	0.05	0.50	1.00
Current density (mA/cm^2)	650	100	100
Voltage gradient (kV/cm)	117	70	56
Comments	normal grad	very high grad	high grad
	very high J	high J	normal J
	tiny spot	best bet	need screen

Use multi-beamlets to increase beam current

- This concept is being studied for multiple-beam HIF drivers because of its advantage in compactness, but size may not be an issue for a single-beam HEDP ion driver.
- The beamlet brightness is reduced by the grid transparency
- It can be scaled to higher beam current.
- The short rise time (due to a small extraction gap) may be the most important advantage here.

MAP Diode with 700 kV, 1 cm gap, various noble gases

- Magnetic field insulation
- Virtual cathode from circulating electrons
- Neutralized transport with comoving electrons
- J in kA/cm² range but large microdivergence
- Need to separate out co-moving electrons before further acceleration

An Accel-Decel injector rapidly compresses the beam

- Use a high voltage to extract significant beam current
- Decelerate the ions to longitudinally compress the bunch length while loading it into a solenoid channel
- Do "constant lamda" acceleration to amplify the beam current and shortening the pulse length. A velocity tide can further compress the bunch.
- This method allows the use of a low current ion source to do "load and fire". However, the compression will significantly increase the longitudinal emittance.

A preliminary design of an Accel-Decel injector

Time-dependent adaptive-mesh simulation shows how to achieve a fast rise time

Applied Diode Voltage

Current at Faraday cup

- The current pulse rises faster than the applied voltage pulse.
- Capacitive coupling softens the signal rise time.
- One dimensional theoretical model:

Example: 50ns/350ns

The Heavy Ion Fusion Virtual National Laboratory

Near-term enabling R&D

- High voltage breakdown threshold at 100 ns time scale and as a function of gap distance.
- Magnetic insulation
- High current density Li⁺ surface ionization source.
- Large aperture gas source with screen control, and study the rise time.
- Time dependent simulation to examine the rise time and transient effects.

